et al., Tetrahedron Lett., 3563 (1970).
(20) T. W. Cole, Ph.D. Thesis, University of Chicago, 1966.
(21) A. A. Bothner-By and S. M. Castellano, "Computer Programs in Organic Chemistry", D. F. DeTar, Ed., W. A. Benjamin, New York, N.Y. 1968, p 10.
(22) The solvent shift effects and the assignment of shifts in aromatic solvents are discussed in part Ii of this series.
(23) J. M. Key, Ph.D. Thesis, University of Hull, England, 1968.
(24) A. J. H. Klunder, Ph.D. Thesis, University at Nijmegen, Netherlands, 1973.
(25) G. L. Dunn and J. R. E. Hoover (S. K. F. Laboratories), British Patent 1068 655; U.S. Patents 3418 368; 3538 160; 3542 868; 3562317 (See Chem. Abstr., 68, p 2640 m (1968)).
(26) W. A. Gregory (E. I. du Pont de Nemours and Co.), U.S. Patent 3558704 (See Chem. Abstr., 74, P 141105c (1971)).
(27) E. S. Wallis and J. F. Lane, Org. React, 3, 267 (1944).
(28) I. Fleming and D. H. Williams, Tetrahedron, 23, 2747 (1967).
(29) (a) L. M. Jackman and S. Sternhell, "Applications of Nuclear Magnetic Resonance Spectroscopy in Organic Chemistry', Pergamon Press, Oxford, 1969, p 280 ff; (b) p 164; (c) p 88.
(30) (a) J. P. Schaeter and K. K. Walthers, Tetrahedron, 27, 5281 (1971); (b) S. Meiboom and L. C. Snyder. J. Chem. Phys., 52, 3857 (1970), and references cited therein; (c) for $\mathrm{C}-\mathrm{C}-\mathrm{C}$ and $\mathrm{H}-\mathrm{C}-\mathrm{H}$ angles of 90 and 112°. respectively.
(31) M. Karplus, J. Am. Chem. Soc., 85, 2870 (1963).
(32) (a) S. Sternhell, Q. Rev., Chem. Soc., 23, 236 (1969); (b) M. Barfield and B. Chakrabarti, Chem. Rev., 69, 757 (1969).
(33) J. Hilton and L. H. Sutcliffe, Prog. Nucl. Magn. Reson. Spectrosc., 10, 27 (1975).
(34) For an x-ray structure of cubane, see ref 4 . The bond lengths and angles are essentially unchanged In 1,4-dicarbomethoxycubane (P. Bird, private communlcation).
(35) (a) M. Barfield and M. D. Johnston, Jr., Chem. Rev., 73, 53 (1973); (b) S L. Smith, Top. Curr. Chem., 27, 119 (1972).
(36) (a) R. W. Taft, E. Price, I. R. Fox, K. K. Andersen, and G. T. Davis, J. Am. Chem. Soc., 85, 709 (1963); (b) Taft et al. do not report σ_{I} values for COCl or $\mathrm{NHCO}_{2} \mathrm{R}$; as an approximation we have used their σ_{1} values for COF and NHCOR, respectively.
(37) M. Charton, J. Org. Chem., 29, 1222 (1964); S. Ehrenson, R. T. C. Brownlee, and R. W. Taft, Prog. Phys. Org. Chem., 10, 1 (1973).
(38) J. R. Cavanaugh and B. P. Dailey, J. Chem. Phys., 34, 1099 (1961).
(39) P. R. Wells, Prog. Phys. Org. Chem., 6, 111 (1968).
(40) M. T. Tribble and J. G. Traynham, "Advances in Linear Free Energy Relationships'". N. B. Chapman and J. Shorter, Ed., Plenum Press, New York, N.Y., 1972, p 143 , and references cited therein.
(41) A. D. Cohen and T. Schaefer, Mol. Phys., 10, 209 (1966).
(42) H. Booth and P. R. Thomburrow, Chem. Ind. (London), 685 (1968).
(43) (a) D. J. Sardella, J. Mol. Spectrosc. 31, 70 (1969); (b) K. Takahashi, Bull. Chem. Soc. Jpn. 37, 291 (1968).
(44) H. B. Evans, Jr., A. R. Tarpley, and J. H. Goldstein, J. Phys. Chem., 72, 2552 (1968).
(45) R. C. Fort, Jr., and P. v. R. Schleyer, J. Org. Chem., 30, 789 (1965).
(46) K. B. Wiberg and V. Z. Williams, Jr., J. Org. Chem., 35, 369 (1970).
(47) T. M. Gund, P. v. R. Schleyer, G. D. Unruh, and G. J. Gleicher, J. Org. Chem., 39, 2995 (1974).
(48) R. W. Taft and I. C. Lewis, unpublished summary quoted in ref 36 a.
(49) A partial analysis of the proton NMR spectrum of basketene has been reported (S. Masamune, H. Cuts, and M. G. Hogben, Tetrahedron Lett., 1017 (1966)). They observed meta couplings comparable to the values we have found in cubane (ca. 3.0 Hz), but surprisingly small ortho couplings (also ca .3 .0 Hz). No para coupling constants were measured.
(50) Mass spectral fragmentations will be discussed in a subsequent paper.
(51) A. J. H. Klunder and B. Zwanenburg. Tetrahedron, 29, 161 (1973).
(52) J. D. Roberts. W. T. Moreland, and W. Frazer, J. Am. Chem. Soc., 75, 637 (1953); N. B. Chapman, S. Sotheeswaran, and K. J. Toyne, J. Org. Chem., 35, 917 (1970).

Proton Magnetic Resonance Spectra of Cubane Derivatives. ${ }^{1}$ II. Aromatic Solvent-Induced Shifts

John T. Edward, Patrick G. Farrell,* and Gordon E. Langford
Contribution from the Department of Chemistry, McGill University, Montreal. Canada, H3C 3G1. Received August 27. 1975

Abstract

Aromatic solvent-induced shifts (ASIS) ($\nu_{\mathrm{CDCl}_{3}}-\nu_{\mathrm{Ar}}$) have been measured for a number of substituted cubanes in benzene and pyridine and an additivity rule has been derived which allows accurate prediction of these shifts. Protons remote from the substituent show the largest ASIS and these are shown to correlate with substituent electronegativity. Models are discussed for the nature and stereochemistry of the solute-solvent interaction. It is suggested that the observed additive shifts arise from independent, transient $1: 1$ associations of solvent molecules with the electron-deficient sites of all local dipoles in the solute.

Stereospecific changes in chemical shifts induced by aromatic solvents have been reported for a wide variety of solutes, and a number of different models of the solute-solvent interaction have been proposed to explain them. ${ }^{2-4}$ In our studies of substituted cubanes, we found ASIS useful in removing accidental equivalences of chemical shifts when deceptively simple NMR spectra were obtained in CDCl_{3}. The observed shifts are highly stereospecific, are additive, and show interesting correlations with substituent electronegativities. In contrast to some other systems which have been studied, the rigid, fixed geometry of the cubane system makes it an ideal model for the investigation of both the nature and stereochemistry of these solute-solvent interactions. We report here the results of our studies and confirm that the model proposed by Ronayne and Williams ${ }^{5}$ satisfactorily accounts for observed ASIS, both in this study and in those of other workers.

Results

The compounds were synthesized, and their spectra were measured and analyzed using the computer program LAOCN $3,{ }^{6}$ in the manner previously described. ${ }^{1}$ The observed chemical shifts and ASIS $\Delta=\left(\nu_{\mathrm{CDCl}_{3}}-\nu_{\mathrm{Ar}}\right)$ for unsubstituted,
monosubstituted, and 1,4-disubstituted cubanes are shown in Table I; a positive Δ denotes an upfield shift on replacing CDCl_{3} by the aromatic solvent.

The observed solvent shifts with one exception ${ }^{7}$ follow a consistent pattern which is summarized by eq 1 .

$$
\begin{equation*}
\Delta=S_{0}+\left(S_{1}+7.0\right)+S_{2} \tag{1}
\end{equation*}
$$

The parameter S_{0} is the observed ASIS of unsubstituted cubane, i.e., 9.0 Hz in benzene and 14.0 Hz in pyridine. For disubstituted cubanes, S_{1} and S_{2} are constants whose values depend both upon the substituents and their location (β, γ, or δ) relative to the proton whose shift is being calculated. Values of these specific substituent shift parameters, S_{n}, are given in Table II. For unsubstituted or monosubstituted cubanes, only the first one or two terms of eq 1 are used, respectively. Values of Δ calculated from eq 1 are included in Table I and agree to within $\pm 3 \mathrm{~Hz}$ with the observed shifts.

In our previous paper ${ }^{\prime}$ we reported an additivity rule, eq 2 ,

$$
\begin{equation*}
\nu \mathrm{CDCl}_{3}=403.8+\Delta \nu_{1}+\Delta \nu_{2} \tag{2}
\end{equation*}
$$

which accurately predicts chemical shifts of cubane and its mono- and 1,4-disubstituted derivatives in $\mathrm{CDCl}_{3} .{ }^{8}$ Combining

Table I. Chemical Shifts and AS1S in Benzene and Pyridine for I

Substituents		Solvent ${ }^{\text {a }}$	Chemical shifts, Hz , obsd (calcd)			$\Delta_{\mathrm{CDCl}_{3}} \mathrm{Ar}, \mathrm{Hz}$, obsd (calcd)		
Y	X		${ }^{\nu} \mathrm{A}$	ν_{B}	Others	$\Delta_{\text {A }}$	$\Delta_{\text {B }}$	Others
H_{C}	H_{C}	Benzene	394.8 (394.8)	b	b	9.0 (9.0)	b	b
		Pyridine	389.7 (389.8)	b	b	14.1 (14.0)	b	b
	COOH	Benzene	410.3 (411.7)	365.6 (366.2)	$362.9{ }^{\text {c }}$	17.9 (17.5)	36.2 (37.0)	$36.1{ }^{\text {c }}$
		Pyridine	423.5 (423.7)	382.5 (382.2)	$380.2^{\text {c }}$	4.7 (5.5)	19.3 (21.0)	$18.8{ }^{\text {c }}$
	$\mathrm{CO}_{2} \mathrm{CH}_{3}$	Benzene	411.2 (411.8)	369.3 (371.0)	$367.0, c 342.1^{d}$	12.9 (13.5)	30.9 (30.5)	$30.7, c 26.6^{d}$
		Pyridine	413.1 (413.3)	377.8 (379.5)	$375.8,{ }^{\text {c }} 363.0^{d}$	11.0 (12.0)	22.4 (22.0)	$21.2, c \quad 5.7 d$
	Br	Benzene	401.0 (399.7)	367.1 (364.9)	365.0°	25.2 (25.5)	42.7 (43.5)	$42.4{ }^{\text {c }}$
	COCl	Benzene	400.0 (400.8)	347.2 (350.2)	$344.9{ }^{\text {c }}$	43.5 (42.5)	57.7 (55.0)	$57.6{ }^{\text {c }}$
CH_{3}	$\mathrm{CO}_{2} \mathrm{H}$	Benzene	401.4 (402.5)	336.4 (337.3)	100.0^{e}	10.0 (9.0)	27.8 (27.5)	$27.4{ }^{e}$
		Pyridine	416.8 (417.0)	353.4 (353.8)	$116.4{ }^{e}$	$-5.4(-5.5)$	10.8 (11.0)	$11.0{ }^{e}$
	$\mathrm{CO}_{2} \mathrm{CH}_{3}$	Benzene	403.6 (402.6)	341.9 (342.1)	104.9, e $344.4{ }^{d}$	4.0 (5.0)	21.2 (21.0)	$22.1, e \quad 23.9 d$
	COCl	Benzene	392.8 (391.6)	323.2 (321.3)	$92.3{ }^{e}$	34.4 (34.0)	45.4 (45.5)	38.2^{e}
	$\mathrm{NHCO}_{2} \mathrm{CH}_{3}$	Benzene	378.9 (381.3)	338.1 (339.9)	$111.8,^{e} 342.8{ }^{f}$	10.8 (9.5)	11.7 (10.5)	$14.2, e^{e} 22.8{ }^{f}$
Br	$\mathrm{CO}_{2} \mathrm{H}$	Pyridine	424.0 (423.3)	408.0 (407.6)		10.8 (10.5)	18.2 (17.0)	
	$\mathrm{CO}_{2} \mathrm{CH}_{3}$	Benzene	389.9 (388.9)	383.3 (382.9)	333.8^{d}	40.7 (41.0)	$40.4(40.0)$	35.5^{d}
		Pyridine	414.3 (412.9)	406.7 (404.9)	$360.8^{\text {d }}$	16.3 (17.0)	17.0 (18.0)	8.5^{d}
	COCl	Benzene	378.8 (377.9)	363.0 (362.2)		67.9 (70.0)	61.9 (64.5)	
	Br	Benzene	374.1 (376.8)	b		54.7 (53.0)	b	
		Pyridine	405.8 (407.7)	b		23.0 (22.0)	b	
$\mathrm{CO}_{2} \mathrm{CH}_{3}$	$\mathrm{CO}_{2} \mathrm{H}$	Benzene	396.4 (394.9)	388.9 (390.2)	$336.2^{\text {d }}$	30.2 (32.0)	35.7 (34.5)	$33.8{ }^{\text {d }}$
		Pyridine	420.1 (420.4)	411.5 (412.7)	$363.6{ }^{\text {d }}$	6.5 (6.5)	13.1 (12.0)	$6.4 d$
	COCl	Benzene	383.0 (384.0)	375.2 (374.2)	333.4 d	57.0 (57.0)	50.4 (52.5)	37.3 d
	NCO	Pyridine	415.2 (414.3)	409.4 (408.2)	362.7 d	$-7.6(-7.5)$	3.2 (3.0)	$6.1{ }^{\text {d }}$
	$\mathrm{NHCO}_{2} \mathrm{CH}_{3}$	Benzene	376.2 (373.7)	394.7 (392.8)	$339.0, d 339.0 f$	31.1 (32.5)	$16.2 \text { (17.5) }$	$29.8, d 28.2 f$
	CONH_{2}	Pyridine	422.1 (422.2)	405.4 (405.7)	362.8^{d}	-1.9 (-2.0)	17.8 (17.5)	$6.7 d$
	$\mathrm{CO}_{2} \mathrm{CH}_{3}$	Benzene	393.2 (395.0)	b	$337.1{ }^{\text {d }}$	$29.0 \text { (28.0) }$	b	32.8^{d}
		Pyridine	409.1 (410.0)	b	364.3d	13.1 (13.0)	${ }^{b}$	$7.0{ }^{\text {d }}$
	$\mathrm{CH}_{2} \mathrm{OH}$	Benzene	361.2 (361.6)	402.1 (402.5)	340.6,d 337.38	26.3 (26.5)	11.4 (11.5)	28.5,d 37.7 g
		Pyridine	385.5 (385.1)	409.0 (409.0)	$364.0, d 385.48$	2.2 (3.0)	4.4 (5.0)	5.1,d -10.4g
$\mathrm{CO}_{2} \mathrm{H}$	$\mathrm{CO}_{2} \mathrm{H}$	Pyridine	409.4 (423.1 h)	b		19.3 (5.5 h)	b	
$\mathrm{CH}_{2} \mathrm{OH}$	$\mathrm{CH}_{2} \mathrm{OH}$	Pyridine	384.2 (384.1)	b	389.5 g	-4.6 (-5.0)	b	$-12.8{ }^{\text {g }}$
COCl	COCl	Benzene	362.0 (363.2)	b		81.6 (81.5)	b	

a For chemical shifts in CDCl_{3} see ref $1 . b$ Same as for $\mathrm{H}_{\mathrm{A}} . c{ }^{c} \mathrm{H}_{\mathrm{C}}$ shift. $d \mathrm{OCH}_{3}$ shift. $e \mathrm{CH}_{3}$ shift. $f \mathrm{NHCO}_{2} \mathrm{CH}_{3}$ shift. $g \mathrm{CH}_{2} \mathrm{OH}$ shift. h if the "normal" S parameters from Table 11 are used for both COOH groups.

Table II. Specific Substituent Shifts S

	Benzene				Pyridine	
Substituent	S_{β}	S_{γ}	S_{δ}		S_{β}	S_{γ}
COOH	1.5	21.0	20.0		-16.0^{a}	0.0^{a}
COOMe	-2.5	14.5	14.5		-9.0	1.0
COCl	26.5	39.0	41.5			
Br	9.5	27.5	26.5		-4.0	5.0
CH_{3}	-9.5	-8.5			-10.0	-11.0
$\mathrm{CH}_{2} \mathrm{OH}$	-4.0	-2.0			-19.0	-7.0
$\mathrm{NHCO}_{2} \mathrm{Me}$	2.0	4.0			-24.0	5.5
CONH_{2}					-27 ± 3	-12 ∓ 3
NCO						

a For first COOH group only. In diacid the second COOH group has $S_{\beta}=-1, S_{\gamma}=14.0$.
eq 2 with eq 1 , gives eq 3 which predicts to within $\pm 3 \mathrm{~Hz}$ the observed chemical shifts in benzene and pyridine (see Table I).

$$
\begin{equation*}
\nu_{\lambda r}=403.8-S_{0}+\left(\Delta \nu_{1}-S_{1}-7\right)+\left(\Delta \nu_{2}-S_{2}\right) \tag{3}
\end{equation*}
$$

Chloroform has been used as the reference solvent in this study for reasons of solubility and because most of the cubane spectra that have been reported ${ }^{1}$ were measured using it as solvent. To determine whether it is valid to consider chloroform as an "inert" reference, we have measured the spectra of several cubane derivatives in carbon tetrachloride. The observed
chemical shifts in CCl_{4} and solvent shifts ($\nu_{\mathrm{CDCl}_{3}}-\nu \mathrm{CCl}_{4}$) are shown in Table III. Since all such solvent shifts for cage protons are $<2.5 \mathrm{~Hz}$, we consider their effects as negligible. However, the larger solvent shift (ca .6 Hz) for the methyl protons of 1,4-dicarbomethoxycubane shows that this is only an approximation and confirms that CDCl_{3} is not a truly inert reference solvent. ${ }^{2}$

Discussion

ASIS arise from a solute-solvent interaction which results in a nonrandom orientation of the aromatic solvent molecules relative to the solute molecules. ${ }^{2,9}$ The interaction is usually described as a dipole-induced dipole effect, ${ }^{3}$ and is often discussed in terms of a single $1: 1$ solvent-solute collision complex of fixed geometry. ${ }^{10,11}$ Since the lifetime of these associations is very short on the NMR time scale, ${ }^{2}$ it is more correct to consider a slight time-averaged structuring of the solvent cage around the solute molecule, as the source of the shifts. ${ }^{9}$ However, the $1: 1$ complex models are pictorially attractive and have been remarkably successful in predicting solvent shifts. ${ }^{2}$ An approach that we have found especially useful is Ronayne and Williams' suggestion ${ }^{5}$ that the aromatic solvent molecules solvate the electron-deficient sites of all local dipoles in the solute, in transient 1:1 associations, so that polyfunctional solutes undergo $1: 1$ interactions at various sites, independently.

If the benzene or pyridine molecules solvate an electrondeficient site on the cubane cage, the solvent shifts should show

Table III, Chemical Shifts and Solvent Shifts of 1 in CCl_{4}

Substituent		Chemical shift, Hz, obsd (calcd) ${ }^{a}$			$\Delta_{\mathrm{CDCl}_{3}} \mathrm{CCl}_{4}$, (obsd), Hz, obsd		
X	Y	ν^{ν}	ν^{ν}	Other	$\Delta_{\text {A }}$	Δ_{B}	Other
H	H	$\begin{aligned} & 403.1 \\ & (403.8) \end{aligned}$	b		-0.7	b	
Br	Br	$\begin{aligned} & 429.9 \\ & (429.8) \end{aligned}$	b		-1.1	b	
$\mathrm{CO}_{2} \mathrm{Me}$	$\mathrm{CO}_{2} \mathrm{Me}$	$\begin{aligned} & 420.0 \\ & (423.0) \end{aligned}$	b	363.8^{c}	2.2	b	6.1
COCl	COCl	444.7 (444.7)	b		-1.1	b	
Br	COCl	$\begin{aligned} & 426.8 \\ & (426.6) \end{aligned}$	$\begin{aligned} & 449.0 \\ & (447.9) \end{aligned}$		-1.8	-2.3	

${ }^{a}$ Chemical shifts were calculated using the additivity rule derived for CDCl_{3} as solvent (ref 1). ${ }^{b}$ Same as for $\mathrm{H}_{\mathrm{A}} .{ }^{c} \mathrm{OCH}_{3}$ shift.
a correlation with substituent electronegativities. Aromatic solvent shifts in substituted benzenes have been correlated with Hammett σ parameters. ${ }^{12}$ Figure 1 shows the variation with σ_{1} of the solvent shifts for protons on cubane β and γ to the substituent. The correlation shown uses $\sigma_{!}$values of Charton, ${ }^{13}$ calculated from the $\mathrm{p} K_{\mathrm{a}}$'s of substituted acetic acids. Charton's compilation was used because of its completeness, but similar correlations obtain using σ_{1} 's calculated from ${ }^{19} \mathrm{~F}$ NMR shieldings in weakly protonic solvents ${ }^{14}$ or from $\mathrm{p} K_{\mathrm{a}}$'s of bicyclooctanecarboxylic acids, ${ }^{15}$ or "average" σ 's. ${ }^{16}$ Since measurements in two different solvents are being correlated, the sensitivity of these σ_{1} 's to solvent should be considered. The negligible solvent shifts we have observed between CDCl_{3} and CCl_{4} (which is similar to benzene in its effect on $\sigma_{\mathrm{I}}{ }^{14}$) suggest that this effect is unimportant for most of the substituents. However, the CONH_{2} group may be an exception. It is one of the most solvent-sensitive substituents in Taft's extensive tabulation, ${ }^{14}$ its σ_{I} value (from ${ }^{19} \mathrm{~F}$ NMR) varying from 0.10 in pyridine through ca. 0.21 in weakly protonic solvents to 0.65 in trifluoroacetic acid. Although Taft did not study the CONH_{2} group in chloroform, that solvent's behavior was moderately protonic toward other substituents, so that it may not be entirely valid to discuss the chemical shift effects of the CONH_{2} group in CDCl_{3} and pyridine in terms of a single σ_{I}. The COOH group was excluded from the correlation in pyridine because it reacts chemically with the solvent. Examination of Figure 1 shows that there is a very good linear correlation for the γ position in both solvents, but only a poor one with benzene and practically none with pyridine for hydrogen atoms β to the substituent.

We suggest that the γ shifts arise almost entirely from association of solvent with an electron-deficient site on the cubane cage, but that, in some cases at least, there is a second sol-vent-solute interaction which makes an important contribution to the β shifts. These additional 1:1 interactions can occur when the substituent itself contains a local dipole. These additional effects will be discussed after a consideration of the nature and stereochemistry of the basic association that gives rise to the large γ shifts.

Many models and variations on them have been proposed to account for observed ASIS, but these are often very similar and we therefore consider in detail only two. From a study of a wide range of compounds Ledaal ${ }^{10}$ has proposed that the aromatic solvent molecule associates with the positive end of the molecule, with the dipolar axis along the sixfold axis of symmetry of the benzene ring. Figure 2a illustrates the predicted geometry for the monobromocubane-benzene complex using this model. The γ and δ protons, lying nearest to the benzene ring, are correctly predicted to have the largest positive Δ.

A very different model for the interaction ${ }^{5,9}$ is illustrated

Figure 1. The variation of ASIS $\left(\nu_{\mathrm{CDCl}_{3}}-\nu_{\mathrm{Ar}}\right)$ for substituted cubanes with Charton's σ_{1} values: (a) β-hydrogen atoms, (b) γ-hydrogen atoms. (O) $\mathrm{Ar}=$ benzene; $(\Delta) \mathrm{Ar}=$ pyridine .
a

b

Figure 2. Models for the interaction of aromatic solvent molecules with bromocubane: (a) after Ledaal, ${ }^{10}$ (b) after Ronayne and Williams. ${ }^{5}$
in Figure 2 b in which the benzene molecule is oriented so as to lie as far as possible from the negative end of a local dipole while solvating the positive end. The maximum polarizability of benzene lies in the plane of the ring ${ }^{2}$ but steric considerations ${ }^{5}$ are argued to account for the nonplanarity shown in Figure 2 b . Again the protons β to the substituent are correctly predicted to have a smaller solvent shift than the more remote protons, this time because the β protons lie near the edge of the aromatic shielding cone, whereas the γ and δ protons lie near its center.

When one considers a 1,4 -disubstituted cubane, the two models differ in their predictions (Figure 3). Ledaal's model (Figure 3a) requires a complete change in the geometry of the complex since there is no longer a net molecular dipole. Presumably some geometry such as that shown in Figure 3a has to be invoked and thus the observed additivity of chemical shifts is difficult to explain. However, in the alternative model (Figure 3b) the additivity relationship is preserved and logical. Each local dipole can independently form a $1: 1$ complex with a solvent molecule, giving rise to differing shielding effects upon each of the β and γ protons. Such differing effects imply

Figure 3. Models for the interaction of aromatic solvent molecules with a 1,4 -disubstituted cubane: (a) after Ledaal, ${ }^{10}$ (b) after Ronayne and Williams. ${ }^{5}$
an inherent additivity and the good agreement obtained between observed and predicted ASIS on the basis of Figures $2 b$ and 3 b lends very strong support to the proposal that these Figures provide the best pictures of the stereochemistry of the solute-aromatic solvent interaction. It is worth emphasizing that the "complexes" represented are transient species, and at any given time the solute molecule is probably not interacting with more than one molecule of solvent.

As can be seen by examination of the data of Table I, the observed additivity is not perfect; eq 1 implies that the effect of a second substituent on the solvent shift is approximately 7 Hz smaller than that of the first substituent and this result is not altogether surprising. Thus the electronic interaction between the two local dipoles, together with "steric" interactions of the aromatic solvent molecules forming transient associations with these two dipoles, will tend to weaken the complexes in the disubstituted molecule, relative to a monosubstituted one. Inspection of models shows that only three or four molecules of benzene or pyridine will fit around the circumference of a cubane molecule, within range to form an association as in Figure 2b. In a disubstituted cubane, there are two dipoles competing to form such an association with one of those three or four solvent molecules, and as a result each dipole will spend slightly less of its time complexed with a solvent molecule. Since the difference in shift effect between the first and second substituents is a constant 7 Hz , relatively independent of substituent electronegativities, we believe that this solvent-crowding effect is more important than the electronic effect.

It is well known that benzene complexes with a carbonyl group to give ASIS such as those shown schematically in Figure 4. Such an interaction accounts for the "anomalously" low solvent shifts in Figure 1a for protons β to a carbonyl substituent. In pyridine, protons β to an ester group show a similar deviation (Figure 1a) but much larger deviations are evident for protons β to a $\mathrm{CH}_{2} \mathrm{OH}$ or CONH_{2} group.

The interaction of pyridine with the carbonyl group of an amide is stronger than with that of an ester because of the larger internal dipole of the amide group. Figure 5 a shows a plausible geometry for this association. In all of the cases studied here the substituent-solvent complex is sufficiently remote from the γ protons that it does not contribute significantly to their ASIS. The carbinol substituent probably hydrogen bonds to pyridine as shown in Figure 5b and this suggestion is supported by the large downfield shift observed for the methylene protons.

The small solvent shifts observed with unsubstituted cubane deserve some comment. Similar solvent shifts are observed for methane using an external reference, ${ }^{17}$ but are not expected when using an internal reference (TMS) of approximately the same spherical shape and size as the solute. For example, adamantane is reported to show no appreciable solvent shift. ${ }^{18}$ There may be a weak dipole-induced dipole interaction between cubane and the polar pyridine, but we are unable to provide any good explanation, at present, for the somewhat smaller solvent shift in nonpolar benzene.

Although the alternative model of Ledaal explains, quali-

Figure 4, Aromatic solvent-induced shifts expected in the presence of a carbonyl group.

Figure 5. Models for the specific interactions of pyridine with (a) an amide group and (b) an alcohol group.
tatively, the majority of observed ASIS, an additivity of solvent shifts is not required by this model. It does not readily accommodate the differing behaviors of substituents which contain internal dipoles, such as CONH_{2}, and those that do not, such as Br or CH_{3}. The model described by Ronayne and Williams is in accord with these observations, as well as other reported effects, e.g., the effect of hexamethylbenzene upon the ring protons of 1 -substituted 3,5 -dinitrobenzenes in charge transfer complex interactions, ${ }^{19}$ ASIS of alcohols, ${ }^{20}$ etc. We believe, therefore, that our observations are most consistent with their assumption that the aromatic solvent is forming transient 1:1 associations, probably with the solvent molecules inclined as in Figure 2b, independently with the electron-deficient sites of all local dipoles in the solute. Thus, the shifts for bromocubane arise from a single such $1: 1$ complex, 1,4 -dibromocubane forms two such complexes, and to explain the shifts for cubane-1,4-dicarboxylic acid monomethyl ester monoamide we postulate four independent transient 1:1 complexations.

Acknowledgment. We are grateful to the National Research Council of Canada for financial support, and to McGill University for the award of a McConnell Fellowship (to G.E.L.).

References and Notes

(1) Part I: J. T. Edward, P. G. Farrell, and G. E. Langford, J. Am. Chem. Soc., preceding paper in this issue.
(2) P. Laszlo, Prog. Nucl. Magn. Reson. Spectrosc., 3, 231 (1967), and references therein.
(3) J. Ronayne and D. H. Williams. Annu. Rev. NMR Spectrosc., 2, 83 (1969), and references therein.
(4) E. M. Engler and P. Laszlo, J. Am. Chem. Soc., 93, 1317 (1971), and references therein.
(5) J. Ronayne and D. H. Williams, J. Chem. Soc. B, 540 (1967).
(6) A. A. Bothner-By and S. M. Castellano, "Computer Programs in Organic Chemistry', D. F. DeTar, Ed., W. A. Benjamin, New York, N.Y., 1968, p 10.
(7) Cubane-1,4-dicarboxylic acid in pyridine requires new S constants for the second COOH group. Since pyridine is a basic solvent this effect may be due to the differing $\mathrm{p} K_{\mathrm{a}}$'s of the two COOH groups of a diacid.
(8) Values of the substituent shift parameter Δv are tabulated in ref 1.
(9) R. C. Fort, Jr., and T. R. Lindstrom, Tetrahedron, 23, 3227 (1967).
(10) T. Ledmal, Tetrahedron Lett., 1683 (1968).
(11) J. Homer and M. C. Cooke, J. Chem. Soc. A, 773, 777 (1969).
(12) R. Wasylishin et al., Can. J. Chem., 48, 2885 (1970).
13) M. Charton, J. Org. Chem., 29, 1222 (1964).
(14) R. W. Taft, E. Price, I. R. Fox, I. C. Lewis, K. K. Andersen, and G. T. Davis, J. Am. Chem. Soc., 85, 709 (1963).
(15) J. D. Roberts and W. T. Moreland, J. Am. Chem. Soc., 75, 2167 (1953); F. W. Baker, R. C. Parish, and L. M. Stock, ibid., 89, 5677 (1967).
(16) S. Ehrenson, R. T. C. Brownlee, and R. W. Taft, Prog. Phys. Org. Chem., 10, 1 (1973).
(17) A. D. Buckingham, T. Schaeter, and W. G. Schneider, J. Chem. Phys., 32, 1227 (1960).
(18) R. C. Fort, Jr., and P. v. R. Schleyer, J. Org. Chem., 30, 789 (1965).
(19) M. I. Foreman and R. Foster, J. Chem. Soc. B, 885 (1969).
(20) P. V. De Marco and L. A. Spangle, J. Org. Chem., 34, 3205 (1969).

